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“Quantum mechanics is not a bad preparation for optics.” - Dennis Gabor

Abstract

The equivalence of the paraxial wave equation to a time-dependent Schrodinger
equation is exploited to construct optical analogs of model atoms in monochromatic
fields. The approximation of geometrical optics provides the analog of the corresponding
classical mechanics. Optical analogs of Rabi oscillations, photoionization, stabilization,
and the Kramers-Henneberger transformation are discussed. One possibility for experi-
mental realization of such optical analogs is proposed. These analogs may be useful for
studies of “quantum chaos” when the ray trajectories are chaotic.

Everyone knows there are many analogies between optics and quantum mechanica.
[ would like to suggest here that some recent effects of interest for atoms in strong fields
might possibly be realized in tihe propagation of light.

First recall that the time-dependent Schrodinger equation is formally the same as
the paraxial wave equation of optics. This is well known to optical physicists. (See, for
ir tance, Cook [1] or Stoler [2].) We will briefly derive this correspondence, with the
slight generalizati.:n of allowing the refractive index to vary both axially and transversely.
This will lead us to an optical analog of an atom in a nionochromatic field.

Assume a lincarly polarized monochromatic field with electric field amplitude
E(r)e !, E satisfies the Helmholtz cquation, V?E + k?n?E = 0, where k¥ = w/c and
n is the refractive index. Write E(r) = E,(r.,z)e'*", where E, is assumed to be slowly
varying in : compared with e***; r, is the coordinate in the zy plane, perpendicular to
the direction of propagation 2. Then we can drop 8?E,/32? compared with k8E,/8z in
the Helmholtz equation and work with the paraxial wave equation

(i J O

20k 3 = ~-V3iE, - ¥(n?- 1)E,, (1)




where V2 = (8?/311+0%/8y?). Cbviously the paraxial wave equation has the same form
as the Schrodinger equation for a particle constrained to move in two spatial dimensions:

L, Oy R,
ih 5 = -—ir—n-V;'J’ + Vy. (2)
It is convenient to scale the time and space variables. Introduce in (2) the di-

mensionless time 7 = (h/ma®)t = w,t and the dimensionlass coordinate variables
X =z1/a,Y =y/a, where a is some convenient length. Then (2) becomes

Oy l =2 |4

— _-v -y,

‘o 2 1t h%'/) (3)

where —V-_’L = a®V? is the transverse Laplacian in the X, Y variables. Similarly introduce
the dimensionless coordinate variables Z = 2z/kb?, X = z/b,Y = y/b, where b is some
convenient length scale for the optics problem, so that (1) becomes

za-—-.--—-2-VJ_E,,-2kb(n - 1)E,. (4)
The effective potential in this “optical Schrodinger equation™ is thus
Vopt = —(flc«)‘,)%kzbz(n2 -1). (5)

To kecp things really simple we will consider a few one-dimensional examples, where
equations (3) and (4) become respectively

Oy _ 1 9y 1 T
‘or = T20%7 TR, KB G (6)
0F, 19%E, 1 1, .,
: 37 = —;Z"axz + m%p;(/\'b,ikb Z)Eo. (M
Classical (Ray) Limit
The classical Newton equation of motion corresponding to (6) is mi = ~8V/dz.

If we use (7) to construct the corresponding “optical Newton equation,” we obtain
d*z/dz? = Gn/dz for n 2 1. This is the paraxial approximation to the ray equation
(djds)(ndr/ds) = Vn for a position vector v of a point on a ray, with s a distance
measured along the ray. (3]

This example brings out a simple but important point. In the approximation of
geometrical optics one deals with families of rays, for a ray merely gives us some infor-
mation about a point on the wavefront. In the same way the comparison of classical
and quantum theories must involve an ensemble of trajectories. This is well known, of
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course, but sometimes it seems to be forgotten by those who express great surpise at
the fact that classical systems can exhibit chaos (in the sense of a positive Lyapunov
exponent), while the corresponding quantum systems do not. This can be understood
in part froin the simple consequence of Louiville’s theorem that classical distributions of
trajectories cannot exhibit the “very sensitive dependence on initial conditions” that is
the hallmark of classical chaos. [4]

The Harmonic Oscillator

According to equations (5)-(7) we can produce the optical analog of a harmonic
oscillator by making Vop/hw, = k%% (n? — 1) = CX??, or n(z) = 1 ~ Dz? for n 2 |,
where C, D are positive constants. This defines a lenslike medium, [5] also known as
a graded-inder waveguide. In this case the “optical Newton equation” above becomes
d*z/dz*+ Dz = 0, so that the ray displacements oscillate harmonically with propagation
in the lenslike medium. In the wave-optical description, as in the quantum-mechanical
oscillator, the modes of the field in the len:like medium are such that E,(z) is a Hermite
polynomial, the lowest-order mode being the ubiquitous Gaussian bearmn. Since spherical
mirrors affect rays in basically the same way as a thin lens, it should come as no surprise
to anyone who knows elementary quantum mechanics that the modes of stable laser
resonators are Gaussian fields.

Anharmonic Oscillator

Similarly we can construct the optical analog of an anharmonic oscillator with po-
tential V(z) o z? + Az*, say, by choosing n(z) = 1 ~ D(z? + Az*). By choosing the
transverse index variation n(z) appropriately we can “design™ any anharmonic oscillator
we like.

Time-Dependent Potential

Thus far we have taken n to be a function of z but not 2. That is, we have not
allowed the refractive index to vary along the direction of propagation. For the quantum
problem, this means w. have restricted ourselves to time-independent potentials. To
devclop optical analogs Jf driver quantum systems with time-dependent perturbations,
we now allow n to be a function of hoth z and 2

A potential that has been used recently in numerical experiments on above-threshold
ionization and high-order Larmonic gereration is [6)

2

—-e
V(T,t) = 7;—:.;»::2:3 ~erA coswt, (8)
or 1 1
T
-'-l;}:V(Xa, ‘;) =~ UXTYT X Fcos pr, (9)
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where we choose hw, = e¥/a,,a = a,,y4 = w/w,, and F == A(e/a?)~? is the ficld strength
in atomic units. The optical analog of the Schrodinger equation with this potential is
obtained when

2 1 - 2 1 _I_ (2”2
n(z,2)~ 1= oo el TFeos (22)1, (10)
in which case (7) becomes
OF, 1 8%E, .
172—— —ng—z--FU(X)E,-'XFCOS(ﬂJ)E,. (”)

with U(X) = —(X?+1)~"/2. Numerical solutions of such a one-dimensional Schrédinger
equation go back at lcast as far as Goldberg, Schey, and Schwartz. [7] More recently such
numerical solutions have been used in studies of quantum chaos [8) and above-threshold
ionization. [6,9]

Since paraxial wave propagation with a periodically varying index like (10) is de-
scribed by a Schrodinger equation for a particle in a time-independent potential plus
a sinusoidal applied field, we can do all the usual things done to treat atoms in fields.
For instance, we can use an expansion in basis states: Consider solutions of the “unper-
turbed” system defined by

(2B, _ _1E,
0Z — 208Xx1?

(We will assume U(~X) = U(X).) Write E,(X, Z) = g(X)e~*2, s0 that g(X) satisfies
the eigenvalue equation

+ U(X)E,. (12)

1 &%
- 5+ U(X)g(X) = Kg(X). (13)
The solutions g,(X) with eigenvalues K, define the optical modes for the unperturbed
paraxial wave equation (12). To solve (11) we can write

E(X,Z) =3 an(2)ga(X)e K%, (14)

and then (11) implies
.'%‘lz'i = =Fcos(pZ) Y. Xyme (Km-Kn)Zq (Z), (15)
Xam = [ dXgi(X)Xgn(X). (16)

'Thus the mode amplitudes a,,(Z) satisfy the same equations as the probability ampli-
tudes of the corresponding quantum-mechanical problem.
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Two-State Atom

Suppose the field is propagating in the lowest-order g mode and encounters a
sinusoidal perturbation along Z, such that 4 2 K; — K, in equation (15). If |Ks — K|
and |K, — K3| for n > 2 are sufficiently different from u that all the a,(Z) obtained
from (15) with n > 2 are very small, we can approximate (15) by

'% _Fcos(#z)xuc-—i(’\’r‘“l)za’(z)
1
o —§Xl,Fa,(Z), (17)
.d 1 \
:—d“l—;— ] —ixnl'ﬂl(z)’ (18)

if we assume u = K; — K,. (The approximation made in writing these equations will be
recognized as the “rotating-wave approximation.”) Thus

17 + lenl F'aj(Z) =0, j=1,2. (19)
This means that, if we have a sinusoidal index variation along the direction of propa-
gation, such that (11) applies, and if the spatial frequency of this variation equals the
difference K, — K, between the eigenvalues of the modes ga(X )e~*%2% and g,(X)e~¥12,
then as the ficld propagates it will oscillate between these two modes at the “Rabi fre-
quency” 3|X2|F. Obviously we can construct “optical Bloch equations” from (17) and
(18).

One-Dimensional Hydrogen Atom

Now let us return to the optical analog (11) of a “one-dimensional hydrogen atom.”
Suppose that a wave corresponding to the lowest-order mode g,(X) is launched into a
medium with refractive index (10). If F = 0 such a wave will, ideally, propagate as
91(X)e~%1Z_ (For the present discussion we can consider any superposition of eigen-
modes, but for simplicity let us just assumc the lowest-order mode corresponding to the
“ground state” of the atom in the quantum analog. We will also ignore “turn-on” effects
associated with the sinusoidal perturbation.) If F' # 0 the sinusoidal perturbation can
cause “transitions” among modes, as we have just seen for the optical analog of a two-
state atom. But in addition to transitions caused by such resonances between the spatial
frequency of the index variation and the difference between two mode wave numbers, we
can induce transitions at any spatial frequency of the index variations if the amplitude of
these variations is large enough. For sufficiently large F we can have “photoionization™:
the optical analog is a transverse spreading of the wave into the “continuum,” i.e, a
transition in which at least part of the field is no longer associated with a transversely
confined propagating mode.



There are obviously optical analogs of above-threshold :onization, harmonic gener-
ation, and stabilization. Let us consider the latter phenomenon. To do this we will first
derive the optical analog of the Kramers-Henneberger (KH) transformation.?

We can cast (11) in the language of bras, kets, and .inear vector spaces of square-
integrable functions:

ib%lE,) - [%P’ +U(X) - XFcos(pZ)] IEo), (20)
with [ X, P} = i. Write F cos(uZ) = —~8A/8Z and define?
\EY) = P 2z [ 2'AZ) X A2)| ). (21)
Then it follows from (20) that
N SRS §
i==iE) = (3P + U(X + Xn(2))] IE2), (22)
or
o8 _ 105,
"9z ~ "2ax°
where X z(2), satisfying d® Xg/dZ? = F cos(uZ), is the ray displacement determined by

geometrical optics with only the z-dependent part of the refractive index. The transfor-
mation from (20) to (22) is the “optical K-H transformation.” Equation (23) is equivalent

+U(X + Xr(2))E. (23)

to
LOE  E
21k32—- = —--a;'r ~ k’[ﬂ:(z‘ + In(z)) - UE': ’ (24)

where n, is the z-independent part of the refractive index and zg(z) is the geomeirical
ray displacement without this part of the index.

Stabilization

By analogy to the atomic case, stabilization can occur if F is large and if a high-
(spatial) frequency approximation is justified. In the high-frequency approximation we
replace n3(z + zg(z)) — 1 by its average over z. Then in effect the z-dependent part
of the index is removed, and there is nothing left to cause transitions among different
modes. In particular, the field will remain confined transversely to a large degree.

YAs 1 learned in & lecture by M H. Mittlemsn (Loa Alamos National Laboratory, April 3, 1991),
this transformation may be troced at least aa [ar back as W. Pauli and M. Fierz, Nuovo Cim. 13, 167
(1938). In fact a very similar transformation appears in a primatily relativistic setting in F. Bloch and
A. Nordsieck, Phys. Rev. 52, 54 (1237).

TThe reader miay recognize the transformation from |E,) to |E%) as a Power-Zienau transformation
followed by the KH transforination.



Can These Optical Analogs be Constructed?

it is not d:fficult to imagine fabricating a medium with any transverse index vari-
ation we like, o let us assume this can be done. (It can pretty much be done with
quantum wells, for instance.) The difficult part of producing an index variation like (10)
is to get the part varying as z cos(Az).

Here is one way this might be done. Recall the paraxial ray equation d?z/dz? =
dn/dz and suppose we bend the propagation path in such a way that the optical axis
(z = 0) is displaced by y(z). Then z is transformed to z + y(z) and the paraxial ray
equation is transformed to d?(z + y)/dz? = dn/dz, ot

dz_on_ _dy
dz? 9z  d2?
if dz/dz,dy/dz are not too large. This is the equation one gets with index n(z) —

zd?y/dz?. In other words, the index is changed from n(z) to n(z) + C(z)z, where C(z)
is the curvature of the guiding optical axis. In particular,

(25)

n(z,z) = n(z) + A’z cos(Az) (26)

if y(z) = cos(Az). This is exactly the type of index we need to realize the optical analog
of a model atom in a monochromatic field.

Note that a simple sinusoidal variation with z of the index, as in a distributed
feedback laser,® for instance, is not enough; we require a sinusoidal variation times z.
This occurs when we bend the guiding axis as just described. Of course we should not
bend the axis so strongly that the paraxial approximation breaks down, or that the
boundaries of the medium intercept the beam.

Remarks

The simplified discussion just given is sufficient to bring out a few important
points. One of these is that phenomena such as stabilization are not distinctly quantum-
inechanical, for we have seen that they can be realized with classical waves. It should
also be clear that the same sorts of conclusions inferred from the one-dimensional model
carry over to the real case of two-dimensional transverse beamn varaiations.

As mentioned earlier, the optical analogy might be useful in studies of “quantum
chaos.” If the index variations are such that the ray trajectories are chaotic, then the
corresponding classical-mechanical system will be chaotic. The question of how this
chaos might manifest itself quantum mechanically is then mathematically identical to
the question of how the chaos of geometrical rays might manisfest 1tself in wave propa-
gation.

30f course the distributed feedback case involves both backward- and forward-propagating waves,
under conditions for which the paraxial approximation is not applicable.
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